If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-80x-144=0
a = 1; b = -80; c = -144;
Δ = b2-4ac
Δ = -802-4·1·(-144)
Δ = 6976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6976}=\sqrt{64*109}=\sqrt{64}*\sqrt{109}=8\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{109}}{2*1}=\frac{80-8\sqrt{109}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{109}}{2*1}=\frac{80+8\sqrt{109}}{2} $
| 0.15+0.2t=0.3t-0.12 | | 2x+4+5=5x+4 | | (r-3)(r+9)=44 | | 6+3x=8x-5 | | k+15/k=12/17 | | 0=200(x)-(102.40/x^2) | | 5x+2+2x=4x+5 | | 2x+3(x-4=2(x-3) | | 5x+x+1=3x+5 | | 4x+3x-4=3x+4 | | 5q-13=27 | | 2×+y=11×+y=9 | | 2x-1+5x-2=4 | | -1/9(x-27)+1/3(x-3)=x+4 | | x+1+4x-2=4 | | 6f-11=19 | | 3x+x+5=5x+3 | | 2×+y=11+y=9 | | 6x-8+3x=10x-16 | | 3(2c-3)-5=2c+6 | | 6x+x+20=8x+6 | | 12x-5+7x=18x+11 | | 2^x-7=8 | | (12)/(17)=(k+15)/(k) | | 12x-4+x+20=17x+4 | | x+12+12=10x-12 | | 5x-12+4x+19=8x+19 | | 8(x-3)+3=2(3x+6)-x | | 1=0.1x-0.8x-20 | | X/4=m/7+4 | | x+9+3x=17 | | 4(3n+5)=6(9n+4)+9 |